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What is Linear Algebra?

Linear Algebra is the study of vector spaces and linear functions.

Vector space Linear functions
Set V of vectors equipped with scaling and addition A linear function 1': RY — R s a function
operations, satisfying nice properties, e.g., satisfying:
l-v=1y 1. T(u+v)=Twu) + T(v)
a-u+v)=a-u+a-v 2. T(a-v)=a-T(v)

(+p)-v=a-v+p-v

We will consider vectors u, v & R4 and scalars
a, } € R. Then each vector takes the form

Key idea: A linear function is determined by
where it maps the vectors (1,0,...,0),

(0,1,...,0), (O,...,0,1). For instance,

1((2,3)) = 1((2,0)) + 1((0,3))
=2-T((1,0)) + 3 - T((0,1))

Yy = (Vl, ...,Vd),

and addition & scaling are entrywise:
U+v=_U+vy,....,u;+v,)

aA-v=(a: vVi...,0t - v,



Basic Notation

By x € R”, we denote a vector with 7 We denote by e; the vector with 1 in

the ith position and O elsewhere, e.g.,

entries.
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Matrices

Key point: The matrix A € R concisely represents the linear function 7: R" — R
determined by

T(e) = ) Aye,

I<m

In English: the ith column of A is the image of the ith basis vector.
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Matrices

Key point: The matrix A € R concisely represents the linear function 7: R" — R
determined by

T(e) = ) Aye,

I<m

In English: the ith column of A is the image of the ith basis vector.

Consider the matrix [a b] :
c d
® The first column says: “Turn each copy of e, into a copies ot ¢, and ¢ copies of e,."

® The second column says: “Turn each copy of e, into b copies of e¢; and d copies of e,.”

That's it — now you understand matrices!
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Concrete Examples



Vlatrices

e of linear
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Matrix Multiplication

Recall that a matrix A € R™" is a concise representation of a linear function
T,: R" — R™.

Matrix multiplication is defined so that A X B represents the linear function T, o T},

when this composition is legal. (l.e., when the dimension ot B’s output equals that of

A's input.)

Formally, for A € R™ and B € R, the matrix product C = AB € R™* is the matrix
with

n
Ci,j .= Z Ai,k Bk,] .
k=1

Intuition:

* B, ; tracks how the jth input vector turns into the kth “middle vector”.

* A, tracks how the kth “middle vector” turns into the ith output vector.

* Together, they track how the jth input vector turns into the ith output vector.



Matrix Multiplication

Visualization from 3Blue1Brown, Essence of linear algebra (2 min)

Shear Rotation Composition
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Matrix Multiplication

Matrix multiplication has very different algebraic properties from multiplication

of real numbers.

They can be explained by remembering that matrix multiplication is really
composition of linear functions in disguise!

® Not commutative: It can be that AB # BA for square matrices A, B.
- Why? T, o Ty can be very different from Tz o T,!

® Inverses may not exist: Many matrices A do not have an A™!

- Why? (Linear) tunctions can destroy information! Take 7T(x) = 0

® Multiplication is not always defined: Requires shape compatibility

- Why? Composition of functions f e g requires codomain(g) = domain(f)



Special Matrices

|[dentity matrix

I € R™"
1 () cee ()
0 1 0
0 0 1

ForallA € R™", Al =A=1A.



Special Matrices

[dentity matrix Diagonal matrix

I € R™" D = diag(d,,d,, ...,d,)
0 0 d 0 -« 0
O 1 O O d2 ., O
o - 0 1 () e 0 d

n

ForallA € R™" Al =A=1A. Clearly, I = diag(1,1,...,1).



Vector-Vector Product

Inner Product or Dot Product

Y1
T _ _ _
x'yeR=[% X Xnl |7, —X1Y1+X2Y2+“‘+xnyn—inyz'-



Vector-Vector Product

Inner Product or Dot Product

Y1
Y2 S

=N tXRY T TN = inyi'
i=1

x'yeR=[X X% - X :
Yn
Geometric Intuition
x'y = (Length of projected x)-(Length of )




Vector-Vector Product
Outer Product

xl xly:_ xlyZ
X XV, X
xy! € R™" = :2 Vi Y2 o Yul] = 2y z.y i
Am AmY1 A2
X X X % yT )
1 1 1 .
: : X
)1 Y2 : n 2 { y. )
xm xm xm .T
Xy (o0 Y )



Vector-Vector Product
Outer Product

A1 AVt X2 ot XYYy
X X~V; X e X
xyT c R™" = :2 IYVi Yo 0 Yl = 2.y ] 2:y2 z.y "
X XYl Xm)2 XimYn
X X X % (= yT )
] ] ] T
. x co o
)1 Y2 : Yn ,2 ( , y. )
xm xm xm .T
Xy (o0 )

Geometric Intuition

xy' is the linear map that measure how much an input aligns with y,

then outputs that amount in direction x.
(Applications to attention, covariance matrices, PCA, etc.)



Matrix-Vector Product

View 1: Write A by rows

T T

-—- q; =-- a; x
T T

y = Ax = ) X = y X
T T

-—- o, ==- a, x

This is function evaluation! Ax is the vector T)(x)

Set of inner products with each row vector

Intuition: a;' x is how much of ¢; gets "produced"” by x,

across all of its entries.



Matrix-Vector Product

View 2: Write A by columns

Linear combination of column vectors

1

Intuition: a x, is the full vector produced by (x;,0,...,0) = x,¢,

Key corollary: Ax is restricted to the “column space” of A



Vector-Matrix Product

View 1: Write A by rows

= alT =
T T - ay -
y =xA=[X X - Xy .
——- a,Z ——-
= X [--- alT ---] + X5 [--- aZT ---] +...TX, [--- a,z,; ---]

Intuition: x’ A expresses linear combination of A's rows,

whereas Ax expresses linear combination of A's columns



Vector-Matrix Product

View 2: Write A by columns

| |
v =x A=k [a! 4 ... a*| = [xTal x'a?

Set of inner products with each column vector

Intuition: Combining rows of A one dimension at a
time, rather than in one shot.



AB =

Matrix-Matrix Multiplication

View 1: Set of inner products

T 11,1 112
= Cll = ‘ ‘ ‘ alb alb
T T1.1 11.2
R - abt alb
’ b! b2 ... pr| =" o
| | | '
- anz; np—— Clny;bl Cln],;bz

Matrix of all possible row/column inner products

Intuition: b’ measures "intermediate" output of e..

T

a: measures how "intermediate” vectors produce

final output e;. Dot product glues them together!

a@ib"

a, b"

11.n
a,b



Matrix-Matrix Multiplication

View 2: Set of matrix-vector products

| | | | |
C=AB=A|p! p2 ... pn| = |AB! AL2 ... Ap"
. | | | |

Intuition: b’ is B's output from e.. So Ab' is AB's

output from e.. l.e.,

(AB)e; = A(Be;) = Ab'



Matrix-Matrix Multiplication

Properties

® Associative: (AB)C = A(BQO).
® Distributive: A(B+ C) =AB + AC.

® |n general, not commutative; it can be the case that AB # BA.



Iranspose

The transpose of a matrix results from 'flipping’
the rows and columns.

dyp dyp ot dyy dyy dopp 0 Ay

dyy g =+ dip oy - Uyp
A= | : : = Al = |& : :

aml am2 amn aln a2n amn



Iranspose

The transpose of a matrix results from 'flipping’
the rows and columns.

dyp dyp ot dyy dyy dopp 0 Ay

dyy g =+ dip oy - Uyp
A= | : : = Al = |& : : :

aml am2 amn aln a2n amn

® Properties:
o (ANH!I =A.
e (AB) =BTA'.
e A+B)! =AT+B"
o [fA=A! then A isa symmetric matrix

e [fA=—A' then A is an anti-symmetric matrix
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Trace

The trace of a square matrix is the
sum of its diagonal elements

n
=1
® Properties (A, B, C € R™"):

o trA =1trA’.

o tr(A+ B) =trA + trB.
o (r(tA) =1 trA

o trAB = trBA

o (tABC. = trBCA = trC{XB‘, and so on.



Norms

® [nformally, norm of a vector measures the ‘length’ of the vector.

® Formally, any function f: R" — R that satisfies 4 properties for x,y € R":

® Non-negativity: f(x) > 0

® Definiteness: (x) =0iffx =0

® Homogeneity: f(tx) = | ]| f(x)

® T[riangle inequality: f(x +y) < f(x) +f(y)




Examples of Norms

® Fuclidean or £,—norm:

1N
N

X7 = \/xTx

Ixll, =1 Y x
V5

® / —norm:

n

X

Ixll; = ). 1x] !
=1

® /__—norm:

¥l oo = max; | x;| X




fp—Norms

® Family of £,—norms, parameterized by a real number p > 1

. 1/p

—_ P
Ixll, ={ D Ixl

=1

® Forp > 2:




Matrix Norms

® [robenius norm:

m n

\=g=

m
2
=1/ 2 llaillz =
=

— \/ tr(ATA)




Linear Combinations and Span

® The span of a set of vectors {x,x,, ...x,} is the set of all vectors that can be
expressed as a linear combination of {x,...,x,}. That s,

n
span({xy,...x,}) =4 V:v = Z ax;, a, € R
i=1

® The span of column vectors of a matrix is known as the column space.

® Similarly, the span of row vectors is known as the row space.



Linear Independence

® A set of vectors {x;,x,,...x,} CR"is said to be (linearly) dependent it one vector

belonging to the set can be represented as a linear combination of the remaining
vectors: thatis, it

n—1
Xn = Z A
i=1

for some scalar values a, ...,a, ; € R.

® Otherwise, the vectors are (linearly) independent.



Rank

Column rank: largest number of columns that constitute a linearly independent set.
Row rank: largest number of rows that constitute a linearly independent set.
Column rank of any matrix is equal to its row rank.

Both quantities collectively referred to as the rank of the matrix.



Rank

Column rank: largest number of columns that constitute a linearly independent set.
Row rank: largest number of rows that constitute a linearly independent set.
Column rank of any matrix is equal to its row rank.

Both quantities collectively referred to as the rank of the matrix.

Properties (A € R"™):

e rank(A) < min(m,n). If rank(A) = min(m, n), A is said to be full rank.
e rank(A) = rank(A7).

e ForA € R™P, B e RP", rank(AB) < min(rank(A), rank(B)).

e ForA,B e R™" rank(A + B) < rank(A) + rank(B).



Inverse of a Square Matrix

he inverse of a square matrix A € R™", denoted A™!, is the unigue matrix such that
A7IA =1 = AA~!

A must be full rank for its inverse to exist.

A is invertible or non-singular if A™! exists and non-invertible or singular otherwise.

Properties (A, B € R™" are non-singular):
e A l=4

e AB)'=B"1A"1

e A H =" denoted by A~



Determinant

Intuition

o letA € R™", a; denotes its ith column; consider the set of points § C R
n
S=veR":v= Zaial- OLa<l i=1,..,n)}
=1

® The absolute value of the determinant of A gives the 'volume’ of the set §

(0,0)



Determinant

(Recursive) Formula

® letA € R™" A\i,\j e R~Dx(n=1) ha the matrix that results from deleting the ith

row and jth column from A

Al =) (=D¥a;|Ay\;| (V€ L. n)
=1

— Z (—1)l+]alj‘A\l,\]‘ (V | € 1,...,”)
j=1

® Equations for small matrices:

B ayp dipp||
a1 ]| = ay, — d11Uyy — Aoy

dr1 dpy




Determinant

Properties

® Properties (A,B € R™"):
o |A]=]A"
* |[AB|=|A]|B]
 |A|=0iff Aissingular
® Fornon-singularA, |[A~!| = 1/|A]|



Exercise

® \Which identities are NOT correct for real-valued matrices A, B, and C? Assume that

inverses exist and multiplications are legal.
A. (AB) ! =B 1A"!
B. I[+A)'=1-A
C. tr(AB) = tr(BA)

D. (AB)! =A'B'




Exercise

e Consider some vector x € R"™. What is the rank of the matrix xx!?



Matrix Calculus



Gradient

® Suppose f: R™" — R is a scalar function that takes as input a matrix A € R"*"

® The gradient of f with respect to A is the (m X n) matrix ot partial derivatives:

oA oA A
oAy 0A oAy,
oA o) A
V,fA) = | oAy oAy oAy,

ofia) o4 Ifl4)
0A 0A 0A

ml m2 mn



Gradient

® |f the input is just a vector x € R”,
9f(x)

0X1
of(x)
V. f) = | o

of(x)
0x

® Properties of partial derivatives extend here:

* V.(f(x) +gkx) =V, f(x)+ V, gXx).
e Fort€R, V. (1 f(x) =tV f(x).



fo(X) —

of(x)

ox 1

of(x)

0X2

Gradient

Visual Example

T 40
T 35
T 30
T 25
T 20
T 15
T 10




Hessian

® Suppose f: R" = R is a scalar function that takes as input a vector x € R"

® The Hessian of f with respect to x is the (n X n) matrix ot partial derivatives:

flx)  Ifx) - 0%f(x)

ax 12 ax 1 dXz dx 1 axn
’flx)  O°flx) 0°f(x)
Vyzc fx) RAXNT — | gx,0%; 0x? 0x,0x,

flx)  Ofx) - 0%f(x)

ox,0%;  0X,0%, ox2

® |tis symmetric (provided the second partial derivatives are continuous).



Jacobian

® Suppose f: R" = R" is a vector function that takes as input a vector x € R”"

® The Jacobian of fwith respect to x is the (m X n) matrix of partial derivatives:

i@ A® 0 @

V}{ fl( X) 0x, 0X, 0x,,
ofhx)  Ifh(x) df>(x)
ofx)  of() of(x) VI £(x)
V. fx) = o Tor - X : — | oy 0%, 0x,,
Vi fu) K KO %W

0X1 0X, 0x,,



Gradient of a Linear Function

e Forx € R”, let f(x) = b'x (= x'b) for some known vector b € R". Then,

n
J(x) = Z b;x;

=1

® This gives:
6f(x) 0
bx =0b
axk Z X
Vbix=>b
. . d (ax)

e Analogous to single variable calculus, where =a

ox



Jacobian of a Linear Function

e Forx € R”, let f(x) = Ax for some known matrix A € R™". Then,

f(X)=a'x Yi=1,--,m

® This gives:

fo(X) —



Gradient of a Quadratic Function

® Forx € R”, let f(x) = x! Ax for some known matrix A € R™". Then,
n n
f(x) = Z Z Aljxixj
i=1 j=1
® Using previous slides, product rule for f(x) = g(x)! x, with g(x) = Al x, we get:

V_ f(x) = V){g(x)x + V){xg(x)
= AN 'x+1'ATx
= (A+ADx

® This gives the Hessian:

Vofx)y =A+AT



Exercise

e A function f: R™! - R is defined as f(x) = x'Ax + b'x for some b € R™! and

0
A € R™" What is the derivative 6_f (also called the gradient V£(x))?
X



Exercise

e A function f: R™ — R is defined as f(A) = x' Ax for some x € R™!, What is the

of

derivative —7?

0A



Questions?

Next Week: Probability Review



