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What is Linear Algebra?
Linear Algebra is the study of vector spaces and linear functions.
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Vector space 
Set V of vectors equipped with scaling and addition 
operations, satisfying nice properties, e.g.,


 








We will consider vectors  and scalars 
. Then each vector takes the form 


,

 and addition & scaling are entrywise:





1 ⋅ v = v
α ⋅ (u + v) = α ⋅ u + α ⋅ v
(α + β) ⋅ v = α ⋅ v + β ⋅ v

u, v ∈ ℝd

α, β ∈ ℝ
v = (v1, …, vd)

u + v = (u1 + v1, …, ud + vd)
α ⋅ v = (α ⋅ v1, …, α ⋅ vd)
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Linear functions 
A linear function  is a function 
satisfying:

1. 


2. 


Key idea: A linear function is determined by 
where it maps the vectors , 

, . For instance,


 

T : ℝd → ℝk

T(u + v) = T(u) + T(v)
T(α ⋅ v) = α ⋅ T(v)

(1,0,…,0)
(0,1,…,0) (0,…,0,1)

T((2,3)) = T((2,0)) + T((0,3))
= 2 ⋅ T((1,0)) + 3 ⋅ T((0,1))
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Basic Notation
By            , we denote a vector with    
entries.

x ∈ ℝn n

x =

x1
x2
⋮
xn

We denote by  the vector with 1 in 
the ith position and 0 elsewhere, e.g.,  

ei

e2 =

0
1
0
⋮
0



Basic Notation
By            , we denote a vector with    
entries.

x ∈ ℝn n

By , we denote a matrix with  rows and  columns.A ∈ ℝm×n m n

x =

x1
x2
⋮
xn

A =

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

am1 am2 ⋯ amn

=
| | |

a1 a2 ⋯ an

| | |
=

--- aT
1 ---

--- aT
2 ---

⋮
--- aT

m ---

We denote by  the vector with 1 in 
the ith position and 0 elsewhere, e.g.,  

ei

e2 =

0
1
0
⋮
0



Matrices
Key point: The matrix  concisely represents the linear function  
determined by 

In English: the ith column of A is the image of the ith basis vector. 

I think of it like a system of pipes: copies of basis vectors go in, and copies of basis 
vectors go out. 

A ∈ ℝm×n T : ℝn → ℝm

T(ej) = ∑
i≤m

Aijei



Matrices
Key point: The matrix  concisely represents the linear function  
determined by 

In English: the ith column of A is the image of the ith basis vector. 

I think of it like a system of pipes: copies of basis vectors go in, and copies of basis 
vectors go out. 

A ∈ ℝm×n T : ℝn → ℝm

T(ej) = ∑
i≤m

Aijei



Matrices
Key point: The matrix  concisely represents the linear function  
determined by 

In English: the ith column of A is the image of the ith basis vector.

A ∈ ℝm×n T : ℝn → ℝm

T(ej) = ∑
i≤m

Aijei

Consider the matrix  :  

• The first column says: “Turn each copy of  into  copies of  and  copies of .” 

• The second column says: “Turn each copy of  into  copies of  and  copies of .” 

That’s it — now you understand matrices! 

[a b
c d]

e1 a e1 c e2

e2 b e1 d e2
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Matrices
Visualization from 3Blue1Brown, Essence of linear algebra (3 min) 



Concrete Examples
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Matrix Multiplication
Recall that a matrix  is a concise representation of a linear function 

.  

Matrix multiplication is defined so that  represents the linear function , 
when this composition is legal. (I.e., when the dimension of ’s output equals that of 

’s input.) 

Formally, for  and , the matrix product  is the matrix 
with  

 

Intuition: 

•  tracks how the jth input vector turns into the kth “middle vector”. 

•  tracks how the kth “middle vector” turns into the ith output vector. 

• Together, they track how the jth input vector turns into the ith output vector.

A ∈ ℝm×n

TA : ℝn → ℝm

A × B TA ∘ TB
B

A

A ∈ ℝm×n B ∈ ℝn×p C = AB ∈ ℝm×p

Ci,j :=
n

∑
k=1

Ai,k Bk,j .

Bk,j

Ai,k
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Matrix Multiplication
Matrix multiplication has very different algebraic properties from multiplication 
of real numbers.  

They can be explained by remembering that matrix multiplication is really 
composition of linear functions in disguise! 

• Not commutative: It can be that  for square matrices  

- Why?  can be very different from ! 

• Inverses may not exist: Many matrices  do not have an  

- Why? (Linear) functions can destroy information! Take  

• Multiplication is not always defined: Requires shape compatibility 

- Why? Composition of functions  requires  

AB ≠ BA A, B .
TA ∘ TB TB ∘ TA

A A−1

T(x) = 0

f ∘ g codomain(g) = domain( f )
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Special Matrices

1 0 ⋯ 0
0 1 ⋱ 0
⋮ ⋱ ⋱ ⋮
0 ⋯ 0 1

      Identity matrix 
In ∈ ℝn×n

For all , .A ∈ ℝm×n AIn = A = ImA



Special Matrices

1 0 ⋯ 0
0 1 ⋱ 0
⋮ ⋱ ⋱ ⋮
0 ⋯ 0 1

d1 0 ⋯ 0
0 d2 ⋱ 0
⋮ ⋱ ⋱ ⋮
0 ⋯ 0 dn

      Identity matrix 
In ∈ ℝn×n

                         Diagonal matrix 
                            D = diag(d1, d2, …, dn)

For all , .A ∈ ℝm×n AIn = A = ImA Clearly, .I = diag(1,1,…,1)



Vector-Vector Product

Inner Product or Dot Product

xTy ∈ ℝ = [x1 x2 ⋯ xn]

y1
y2
⋮
yn

= x1 y1 + x2 y2 + ⋯ + xn yn =
n

∑
i=1

xiyi .



Vector-Vector Product

Inner Product or Dot Product

Geometric Intuition
xTy = (Length of projected ) (Length of )x ⋅ y

x
y

xTy ∈ ℝ = [x1 x2 ⋯ xn]

y1
y2
⋮
yn

= x1 y1 + x2 y2 + ⋯ + xn yn =
n

∑
i=1

xiyi .



Outer Product

Vector-Vector Product

xyT ∈ ℝm×n =

x1
x2
⋮
xm

[y1 y2 ⋯ yn] =

x1y1 x1y2 ⋯ x1yn
x2y1 x2y2 ⋯ x2yn

⋮ ⋮ ⋱ ⋮
xmy1 xmy2 ⋯ xmyn

x1 x1 ⋯ x1
y1 ⋮ y2 ⋮ ⋱ yn ⋮

xm xm ⋯ xm

x1 (⋯ yT ⋯)
x2 (⋯ yT ⋯)
⋮ ⋮ ⋮ ⋮
xm (⋯ yT ⋯)



Outer Product

Vector-Vector Product

xyT ∈ ℝm×n =

x1
x2
⋮
xm

[y1 y2 ⋯ yn] =

x1y1 x1y2 ⋯ x1yn
x2y1 x2y2 ⋯ x2yn

⋮ ⋮ ⋱ ⋮
xmy1 xmy2 ⋯ xmyn

x1 x1 ⋯ x1
y1 ⋮ y2 ⋮ ⋱ yn ⋮

xm xm ⋯ xm

x1 (⋯ yT ⋯)
x2 (⋯ yT ⋯)
⋮ ⋮ ⋮ ⋮
xm (⋯ yT ⋯)

Geometric Intuition
 is the linear map that measure how much an input aligns with , 

then outputs that amount in direction . 
(Applications to attention, covariance matrices, PCA, etc.)

xyT y
x



Matrix-Vector Product

View 1: Write  by rowsA

This is function evaluation!  is the vector  

Set of inner products with each row vector 

Intuition:  is how much of  gets "produced" by x, 
across all of its entries.

Ax TA(x)

aT
i x ei

y = Ax =

--- aT
1 ---

--- aT
2 ---

⋮
--- aT

m ---

x =

aT
1 x

aT
2 x
⋮

aT
m x

.



Matrix-Vector Product

View 2: Write  by columnsA

Linear combination of column vectors 

Intuition:  is the full vector produced by  

Key corollary:  is restricted to the “column space” of 

a1x1 (x1,0,…,0) = x1e1

Ax A

y = Ax =
| | |

a1 a2 ⋯ an

| | |

x1
x2
⋮
xn

=
|

a1

|
x1 +

|
a2

|
x2 + … +

|
an

|
xn .



Vector-Matrix Product

View 1: Write  by rowsA

yT = xT A = [x1 x2 ⋯ xm]

--- aT
1 ---

--- aT
2 ---

⋮
--- aT

m ---

= x1 [--- aT
1 ---] + x2 [--- aT

2 ---] + . . . + xm [--- aT
m ---]

Intuition:  expresses linear combination of 's rows, 
whereas  expresses linear combination of 's columns

xT A A
Ax A



Vector-Matrix Product

View 2: Write  by columnsA

yT = xT A = xT
| | |

a1 a2 ⋯ an

| | |
= [xTa1 xTa2 ⋯ xTan]

Set of inner products with each column vector 

Intuition: Combining rows of  one dimension at a 
time, rather than in one shot.

A



Matrix-Matrix Multiplication

View 1: Set of inner products

C = AB =

--- aT
1 ---

--- aT
2 ---

⋮
--- aT

m ---

| | |
b1 b2 ⋯ bn

| | |
=

aT
1 b1 aT

1 b2 ⋯ aT
1 bn

aT
2 b1 aT

2 b2 ⋯ aT
2 bn

⋮ ⋮ ⋱ ⋮
aT

mb1 aT
mb2 ⋯ aT

mbn

Matrix of all possible row/column inner products 

Intuition:  measures "intermediate" output of . 
 measures how "intermediate" vectors produce 

final output . Dot product glues them together!

bi ei
aT

i
ej



Matrix-Matrix Multiplication

View 2: Set of matrix-vector products

C = AB = A
| | |

b1 b2 ⋯ bn

| | |
=

| | |
Ab1 Ab2 ⋯ Abn

| | |

Intuition:  is 's output from . So  is  
output from . I.e., 

bi B ei Abi AB′￼s
ei

(AB)ei = A(Bei) = Abi



Matrix-Matrix Multiplication

Properties

• Associative: . 

• Distributive: . 

• In general, not commutative; it can be the case that .

(AB)C = A(BC)

A(B + C) = AB + AC

AB ≠ BA



Transpose
The transpose of a matrix results from ’flipping’ 

the rows and columns.

A =

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

am1 am2 ⋯ amn

AT =

a11 a21 ⋯ am1
a12 a22 ⋯ am2
⋮ ⋮ ⋱ ⋮

a1n a2n ⋯ amn



Transpose
The transpose of a matrix results from ’flipping’ 

the rows and columns.

• Properties: 

• . 

• . 

•  

• If , then  is a symmetric matrix 

• If , then  is an anti-symmetric matrix

(AT)T = A
(AB)T = BT AT

(A + B)T = AT + BT

A = AT A

A = − AT A

A =

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮

am1 am2 ⋯ amn

AT =

a11 a21 ⋯ am1
a12 a22 ⋯ am2
⋮ ⋮ ⋱ ⋮

a1n a2n ⋯ amn



Exercise
• Suppose  are all -dimensional vectors, and  is a matrix where the 

-th row is . Then which of the following identities are correct?
x1, …, xN D X ∈ ℝN×D

n x⊤
n

A.  

B.  

C.  

D.

X⊤X =
N

∑
n=1

xnx⊤
n

X⊤X =
N

∑
n=1

x⊤
n xn

XX⊤ =
N

∑
n=1

xnx⊤
n

XX⊤ =
N

∑
n=1

x⊤
n xn
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Trace
The trace of a square matrix is the 

	 sum of its diagonal elements

trA =
n

∑
i=1

Aii .

• Properties (  ): 

• . 

• . 

•  

•  

• , and so on.

A, B, C ∈ ℝn×n

trA = trAT

tr(A + B) = trA + trB
tr(tA) = t trA
trAB = trBA
trABC = trBCA = trCAB



Norms

• Informally, norm of a vector measures the ‘length’ of the vector. 

• Formally, any function  that satisfies 4 properties for : 

• Non-negativity:  

• Definiteness:  iff  

• Homogeneity:  

• Triangle inequality: 

f : ℝn → ℝ x, y ∈ ℝn

f(x) ≥ 0
f(x) = 0 x = 0

f(tx) = | t | f(x)
f(x + y) ≤ f(x) + f(y)



Examples of Norms

∥x∥2 =
n

∑
i=1

x2
i = xTx

∥x∥1 =
n

∑
i=1

|xi |

∥x∥∞ = maxi |xi |

• Euclidean or norm: ℓ2−

• norm: ℓ1−

• norm: ℓ∞−

x1

x2

x1

x2

x1

x2



Normsℓp−

∥x∥p = (
n

∑
i=1

|xi |
p )

1/p

• Family of norms, parameterized by a real number : ℓp− p ≥ 1

x1

x2
• For : p ≥ 2



Matrix Norms

∥A∥F =
m

∑
i=1

n

∑
j=1

A2
ij

=
m

∑
i=1

∥ai∥2
2 =

n

∑
j=1

∥aj∥2
2

= tr(AT A)

• Frobenius norm: 



Linear Combinations and Span

span({x1, …xn}) = {v : v =
n

∑
i=1

αixi, αi ∈ ℝ}

• The span of a set of vectors  is the set of all vectors that can be 
expressed as a linear combination of . That is,

{x1, x2, …xn}
{x1, …, xn}

• The span of column vectors of a matrix is known as the column space. 

• Similarly, the span of row vectors is known as the row space.



Linear Independence
• A set of vectors  is said to be (linearly) dependent if one vector 

belonging to the set can be represented as a linear combination of the remaining 
vectors;  that is, if 

{x1, x2, …xn} ⊂ ℝm

xn =
n−1

∑
i=1

αixi

for some scalar values . 

• Otherwise, the vectors are (linearly) independent.

α1, …, αn−1 ∈ ℝ



• Column rank: largest number of columns that constitute a linearly independent set.  

• Row rank: largest number of rows that constitute a linearly independent set. 

• Column rank of any matrix is equal to its row rank. 

• Both quantities collectively referred to as the rank of the matrix. 

• Properties (  ): 

• .  If ,  is said to be full rank.  

• . 

• For , , . 

• For , .

A ∈ ℝm×n

rank(A) ≤ min(m, n) rank(A) = min(m, n) A

rank(A) = rank(AT)

A ∈ ℝm×p B ∈ ℝp×n rank(AB) ≤ min(rank(A), rank(B))

A, B ∈ ℝm×n rank(A + B) ≤ rank(A) + rank(B)

Rank
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• For , , . 

• For , .

A ∈ ℝm×n

rank(A) ≤ min(m, n) rank(A) = min(m, n) A

rank(A) = rank(AT)

A ∈ ℝm×p B ∈ ℝp×n rank(AB) ≤ min(rank(A), rank(B))

A, B ∈ ℝm×n rank(A + B) ≤ rank(A) + rank(B)

Rank



Inverse of a Square Matrix

• The inverse of a square matrix , denoted , is the unique matrix such that          
.   	 	  

•  must be full rank for its inverse to exist. 

•  is invertible or non-singular if  exists and non-invertible or singular otherwise. 

• Properties (  are non-singular ): 

•  

•  

• , denoted by 

A ∈ ℝn×n A−1

A−1A = In = AA−1

A

A A−1

A, B ∈ ℝn×n

(A−1)−1 = A

(AB)−1 = B−1A−1

(A−1)T = (AT)−1 A−T



Determinant

Intuition

A = [1 3
3 2]

a1 = [1
3] a2 = [3

2]

• Let ,  denotes its th column; consider the set of points :A ∈ ℝn×n ai i S ⊂ ℝn

S = {v ∈ ℝn : v =
n

∑
i=1

αiai (0 ≤ αi ≤ 1; i = 1,…, n)}

• The absolute value of the determinant of  gives the ‘volume’ of the set A S



Determinant

(Recursive) Formula

|A | =
n

∑
i=1

(−1)i+jaij |A∖i,∖ j | (∀ j ∈ 1,…, n)

=
n

∑
j=1

(−1)i+jaij |A∖i,∖ j | (∀ i ∈ 1,…, n)

[a11] = a11 [a11 a12
a21 a22] = a11a22 − a12a21

• Let ,  be the matrix that results from deleting the th 

row and th column from 

A ∈ ℝn×n A∖i,∖ j ∈ ℝ(n−1)×(n−1) i
j A

• Equations for small matrices:



Determinant

Properties

• Properties (  ): 

•  

•  

•  iff  is singular 

• For non-singular , 

A, B ∈ ℝn×n

|A | = |AT |

|AB | = |A | |B |

|A | = 0 A

A |A−1 | = 1/ |A |



Exercise
• Which identities are NOT correct for real-valued matrices , , and ? Assume that 

inverses exist and multiplications are legal.
A B C

A.  

B.  

C.  

D.

(AB)−1 = B−1A−1

(I + A)−1 = I − A

tr(AB) = tr(BA)

(AB)⊤ = A⊤B⊤



Exercise

• Consider some vector . What is the rank of the matrix ?x ∈ ℝn xxT



Matrix Calculus



Gradient

∇A f(A) =

∂f(A)
∂A11

∂f(A)
∂A12

⋯ ∂f(A)
∂A1n

∂f(A)
∂A21

∂f(A)
∂A22

⋯ ∂f(A)
∂A2n

⋮ ⋮ ⋱ ⋮
∂f(A)
∂Am1

∂f(A)
∂Am2

⋯ ∂f(A)
∂Amn

• Suppose  is a scalar function that takes as input a matrix  

• The gradient of  with respect to  is the ( ) matrix of partial derivatives:

f : ℝm×n → ℝ A ∈ ℝm×n

f A m × n



Gradient

• If the input is just a vector ,x ∈ ℝn

• Properties of partial derivatives extend here: 

• . 

• For , .

∇x( f(x) + g(x)) = ∇x f(x) + ∇xg(x)

t ∈ ℝ ∇x(t f(x)) = t∇x f(x)

∇x f(x) =

∂f(x)
∂x1

∂f(x)
∂x2

⋮
∂f(x)
∂xn



Gradient

Visual Example

x1

x2

∇x f(x) =

∂f(x)
∂x1

∂f(x)
∂x2



Hessian

• Suppose  is a scalar function that takes as input a vector  

• The Hessian of  with respect to  is the ( ) matrix of partial derivatives:

f : ℝn → ℝ x ∈ ℝn

f x n × n

• It is symmetric (provided the second partial derivatives are continuous).

∇2
x f(x) ∈ ℝn×n =

∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

⋯ ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
⋯ ∂2f(x)

∂x2∂xn

⋮ ⋮ ⋱ ⋮
∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

⋯ ∂2f(x)
∂x2

n



Jacobian

• Suppose  is a vector function that takes as input a vector  

• The Jacobian of  with respect to  is the ( ) matrix of partial derivatives:

f : ℝn → ℝm x ∈ ℝn

f x m × n

∇x f(x) = [ ∂f(x)
∂x1

∂f(x)
∂x2

⋯ ∂f(x)
∂xn ] =

∇T
x f1(x)

∇T
x f2(x)

⋮
∇T

x fm(x)

=

∂f1(x)
∂x1

∂f1(x)
∂x2

⋯ ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

⋯ ∂f2(x)
∂xn

⋮ ⋮ ⋱ ⋮
∂fm(x)

∂x1

∂fm(x)
∂x2

⋯
∂fm(x)

∂xn



Gradient of a Linear Function

• For , let  for some known vector . Then,x ∈ ℝn f(x) = bTx ( = xTb) b ∈ ℝn

f(x) =
n

∑
i=1

bixi

∂f(x)
∂xk

=
∂

∂xk

n

∑
i=1

bixi = bk

∇xbTx = b

• This gives:

• Analogous to single variable calculus, where 
∂ (ax)

∂x
= a



Jacobian of a Linear Function

• For , let  for some known matrix . Then,x ∈ ℝn f(x) = Ax A ∈ ℝm×n

fi(x) = aT
i x ∀i = 1,⋯, m

∇x fi(x) = ai

• This gives:

∇x f(x) =

--- aT
1 ---

--- aT
2 ---

⋮
--- aT

m ---

= A



Gradient of a Quadratic Function

• For , let  for some known matrix . Then,x ∈ ℝn f(x) = xT Ax A ∈ ℝn×n

∇x f(x) = ∇T
x g(x)x + ∇T

x xg(x)

∇2
x f(x) = A + AT

• Using previous slides, product rule for , with , we get:f(x) = g(x)Tx g(x) = ATx

• This gives the Hessian:

f(x) =
n

∑
i=1

n

∑
j=1

Aijxixj

= (AT)Tx + IT ATx

= (A + AT)x



Exercise

• A function  is defined as  for some  and 

. What is the derivative  (also called the gradient )?

f : ℝn×1 → ℝ f(x) = x⊤Ax + b⊤x b ∈ ℝn×1

A ∈ ℝn×n ∂f
∂x

∇f(x)



Exercise

• A function  is defined as  for some . What is the 

derivative ?

f : ℝn×n → ℝ f(A) = x⊤Ax x ∈ ℝn×1

∂f
∂A



Questions? 

Next Week: Probability Review


