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Administrivia

o HW1is out

o Due in about 3 weeks (2/11 midnight). Start early!!!

o Remember:
o Point of the homeworks is for you to assimilate the concepts
o Using Al could prevent you from doing that
o Our goal with grading HWs is to give feedback, make use of it



Recap



Supervised learning in one slide

Loss function: What is the right loss function for the task?

Representation: What class of functions should we use?

Optimization: How can we efficiently solve the empirical risk
minimization problem?

Generalization:  Will the predictions of our model transfer
gracefully to unseen examples?

All related! And the fuel which powers everything is data.




Linear regression

Predicted sale price = price_per_sqft x square footage + fixed expense
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How to solve this? Find stationary points



Are stationary points minimizers?

Mes Conve ® ol \
) ks’\ —‘l 06500{"\/2'5 ; Ty‘ lusah o(,(\m(l\s.‘ews:

hot
convey !

-
-
-
-
-
-
-
-
-

Lenve &

line j&;w:l"; 2 PO"."‘IS

o

VZQF(‘L\S 'S  poscbve
semi= dofinte (psd)



General least square solution

Objective
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Optimization methods
(continued)



Problem setup
Given: a function F(w)
Goal: minimize F(w) (approximately)

Two simple yet extremely popular methods
Gradient Descent (GD): simple and fundamental
Stochastic Gradient Descent (SGD): faster, effective for large-scale problems

Gradient is the first-order information of a function.
Therefore, these methods are called first-order methods.



Gradient descent

GD: keep moving in the negative gradient direction

Start from some w(®. Fort =0,1,2,...
wD  w® — pVF(w®)

where 7 > 0 is called step size or learning rate

* intheoryn should be set in terms of some parameters of F

* in practice we just try several small values

* might need to be changing over iterations (think F(w) = |w|)

e adaptive and automatic step size tuning is an active research area



Why GD?

Intuition: First-order Taylor approximation

l.t-l-c\) v F (M/(n) + Vf ( (1\5 (\;u\ (?
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F(w) ~ F(w®) + V(w7 (w — w®) ~ npFl')

For w = wth = w® — nVEF(w®), we can write,

F(w™) &~ F(w™) — || VF(w™)|3
— F(w(tﬂ)) N F(w(t))

(Note that this is only an approximation, and can be invalid if
the step size is too large.)




Switch to Colab

& optimization.ipynb  7¢

File Edit View Insert Runtime Tools Help

+ Code + Text

° this:theta[l] = last:theta[l] - eta * gradl
theta.append(this_theta)
J.append(cost_func(*this_theta))

# Annotate the objective function plot with coloured points indicating the
# parameters chosen and red arrows indicating the steps down the gradient.
for j in range(1,N):
ax.annotate('', xy=theta[]j], xytext=theta[j-1],
arrowprops={'arrowstyle': '->', 'color': 'orange', 'lw': 1},
va='center', ha='center')
ax.scatter(*zip(*theta), facecolors='none', edgecolors='r', lw=1.5)

# Labels, titles and a legend.
ax.set_xlabel(r's$w_1$')
ax.set_ylabel(r's$w_2$")
ax.set_title('objective function')

plt.show()

B objective function




Convergence guarantees for GD

Many results for GD (and many variants) on convex objectives.
They tell you how many iterations t (in terms of ) are needed to achieve

Fw®)—Fw*) <«



Convergence guarantees for GD

Many results for GD (and many variants) on convex objectives.
They tell you how many iterations t (in terms of ) are needed to achieve

Fw®)—Fw*) <«

Even for nonconvex objectives, some guarantees exist:
e.g. how many iterations t (in terms of €) are needed to achieve

|[VF(w®)|| <«
that is, how close is w® as an approximate stationary point

for convex objectives, stationary point = global minimizer
for nonconvex objectives, what does it mean?



Stationary points: non-convex objectives

A stationary point can be a local minimizer or even a local/global maximizer
(but the latter is not an issue for GD).
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Stationary points: non-convex objectives

A stationary point can also be neither a local minimizer nor a local
maximizer!

o f(w )_wl w%
o Vf(w)= (2w, —2ws)

e so w = (0,0) is stationary

@ local max for blue direction (w; = 0)

@ local min for green direction (wg = 0)

Switch to Colab



Stationary points: non-convex objectives

This is known as a saddle point

@ but GD gets stuck at (0,0) only if
initialized along the green direction

@ so not a real issue especially when
initialized randomly



Stationary points: non-convex objectives

But not all saddle points look like a “saddle” ...
° f(w)=wi+w;
o Vf(w)= (2w, 3w3)
e so w = (0,0) is stationary

@ not local min/max for blue direction
(w1 =0)

Switch to Colab



Stationary points: non-convex objectives

But not all saddle points look like a “saddle” ...
o fw)=wi+ws
o Vf(w)= (2w, 3w3)
e so w = (0,0) is stationary

@ not local min/max for blue direction
(w1 =0)

@ GD gets stuck at (0,0) for any initial
point with wo > 0 and small n

Even worse, distinguishing local min and saddle point is generally NP-hard.



Stochastic Gradient descent

GD: keep moving in the negative gradient direction
SGD: keep moving in the noisy negative gradient direction

wt  w® — pVE(w®)

where VF(w®) is a random variable (called stochastic gradient) s.t.

~

E [VF(w(t))} = VF(w®) (unbiasedness)



Stochastic Gradient descent

GD: keep moving in the negative gradient direction
SGD: keep moving in the noisy negative gradient direction

wt  w® — pVE(w®)

where VF(w®) is a random variable (called stochastic gradient) s.t.

~

E [VF(w(t))} = VF(w®) (unbiasedness)

o Key point: it could be much faster to obtain a stochastic gradient!
o Similar convergence guarantees, usually needs more iterations but

each iteration takes less time.
Switch to Colab



Summary: Gradient descent & Stochastic Gradient descent

o GD/SGD coverages to a stationary point

o for convex objectives, this is all we need



Summary: Gradient descent & Stochastic Gradient descent

GD/SGD coverages to a stationary point
for convex objectives, this is all we need

for nonconvex objectives, can get stuck at local minimizers or “bad” saddle
points (random initialization escapes “good” saddle points)

recent research shows that many problems have no “bad” saddle points or
even “bad” local minimizers

justify the practical effectiveness of GD/SGD (default method to try)



Second-order methods
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Exercise, show that:

(—%wTHtw(t)) = —%Htw(t)

d
Cdw dw
diw <VF(w(t))T (w — w(t))> = VF(fw(t)) % (—

d (1
i <1wTHt'w) = Htw ra— (§(w(t))THtw(t)) =0

1
(w(t))THtw) = —§Htw(t)

N | =

dw
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Newton’s Method Gradient Descent
No learning rate Need to tune learning rate

Super fast convergence Slower convergence

Know and invert Hessian Fast!
(inversion takes 0 (d?>) time (only takes O(d) time)
naively)
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If optimization objective is very flat along a certain direction, 2nd order methods maybe better



Linear classifiers



The Setup

Recall the setup:
e input (feature vector): x € R
e output (label): y € [C] ={1,2,...,C}

e goal: learn a mapping f : R? — [C]

This lecture: binary classification
e Number of classes: C' = 2

e Labels: {—1,+1} (cat or dog)



Representation: Choosing the function class

Lets follow the recipe, and pick a function class F.

We continue with linear models, but how to predict a label using w ' x?

Sign of w " x predicts the label:

_ - +1 ifw'x >0,
sien(w @) =9 T <o

(Sometimes use sgn for sign too.)



Representation:

Choosing the function class
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Still makes sense for “almost” linearly separable data




Iris dataset

iris versicolor iris virginica

One of the most classical and well-known
datasets in machine learning.

Collected by Edgar Anderson, first used by
Ronald Fisher.

Anderson: “There for mile after mile one could
gather irises at will and assemble for comparison
one hundred full-blown flowers of Iris versicolor and
of Iris sentosa canadensis, each from a different
plant, but all from the same pasture, and picked on
the same day and measured by the same person
with the same apparatus. The result is, to ordinary
eyes, a few pages of singularly dry statistics, but to 1. Se D al len gth
the bio-mathematician a juicy morsel quite worth .
looking ten years to find.” 2. Se paI width

petal sepal petal sepal petal  sepal

Features:




Iris Dataset Scatter Plot (Setosa vs Non-Setosa)
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Choosing the loss function
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Choosing the loss function: minimizing 0/1 loss is hard

However, 0-1 loss is not convex.

———————————————— ——————e

....................

Even worse, minimizing 0-1 loss is NP-hard in general.



Choosing the loss function: surrogate losses

Solution: use a convex surrogate loss °2)

1.5¢




Choosing the loss function: surrogate losses

Solution: use a convex surrogate loss °2)

....................

@ perceptron |0ss £perceptron(2) = max{0, —z} (used in Perceptron)



Choosing the loss function: surrogate losses

Solution: use a convex surrogate loss
£(2)

1.5¢

@ perceptron |0ss £perceptron(2) = max{0, —z} (used in Perceptron)

o hinge l0ss hinge(2) = max{0,1 — z}(used in SVM and many others)



Choosing the loss function: surrogate losses

Solution: use a convex surrogate loss °2)

@ perceptron |0ss £perceptron(2) = max{0, —z} (used in Perceptron)
o hinge l0ss hinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss £ogistic(2) = log(1 + exp(—=z)) (used in logistic regression;
the base of log doesn’'t matter)



Onto Optimization!

Find ERM:

1 n
* . / ) T'i,
w” = argmin — (E (yyw ' @ ))

d
weR i=1

where £(-) is a convex surrogate loss function.

o No closed-form solution in general (in contrast to linear regression)
o We can use our optimization toolbox!



Perceptron



The Perceptron

Frank Rosenblatt: Inventor of the perceptron

New York Times, 1958

NEW NAVY DEVICE
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be  con-
scious of its existence.

The Navy last week demonstrated the
embryo of an electronic computer named
the Perceptron which, when completed in
about a year, is expected to be the first
non-living mechanism able to "perceive,
recognize and identify its surroundings
without human training or control.”



Recall perceptron loss

M
2’ va\l,ep l}y‘.w‘x)

L
n =

F(WN <

\

n
. L : ‘
- N w_(t.}

Ll §

‘K‘Iu(ep C Z\

....................




Applying GD to perceptron loss
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Applying SGD to perceptron loss
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Perceptron algorithm

SGD with 7 = 1 on perceptron loss.

1. Initialize w = 0
2. Repeat

e Pick ; ~ Unif(xq,...,x,)

o If sgn(w’x;) # yi
w <— w + Y;x;



Perceptron algorithm: Intuition
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Perceptron algorithm: visually

Repeat:
@ Pick a data point x; uniformly at random

o If sgn(w'x;) # i
W — W + Y;x;
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Perceptron algorithm: Iris dataset

Iris Dataset Scatter Plot (Setosa vs Non-Setosa)
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Iris dataset

Perceptron algorithm

Iteration 50

Iteration 1

Iteration 25
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See demo in Google Colab



HW1: Theory for perceptron!

(HW 1) If training set is linearly separable

@ Perceptron converges in a finite number
of steps

@ training error is 0

There are also guarantees when the data are not linearly separable.



Logistic regression



Logistic loss

AAAAAAAAAA

AAAAAAAAAA




Predicting probabilities

Instead of predicting the {41} label, predict the probability (i.e. regression on probability).

Sigmoid + linear model:

P(y = +1|z,w) = o(w’ x)

where

o(z) = —  (Sigmoid function)
e z

o(z)




The sigmoid function

1
1+e—%

Properties of sigmoid o(z) =
@ between 0 and 1 (good as probability)

o a(wTa:) > 0.5 < wlxz > 0, consistent

with predicting the label with sgn(w!x)

o larger wlx = larger o(w'x) = higher
confidence in label 1

@ 0(2)+o(—2)=1forall 2

@ Therefore, the probability of label —1 is

Ply=-1|z;w)=1-Py=+1|z;w)

=1-o(w'z) =c(—w'x)

. _ L) —
Therefore, we can model P(y | z; w) = o(yw ) = 1+ o—vw'a



Maximum likelihood estimation

What we observe are labels, not probabilities.

Take a probabilistic view

e assume data is independently generated in this way by some w

e perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing labels y1,...,y, given &1, ..., Ty,
as a function of some w?
vind os(ume‘k@-,‘

n

P(w) = [ P(y; | i w) il dokperts  we wqeww\a
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MLE: find w* that maximizes the probability P(w)



Maximum likelihood solution

n
w”* = argmax P(w) = argmaXH P(y; | ;; w)
w Y=

n
= argmalen P(y; | z;;w)
Y=

= argmin 3 —InP(y; | 2;;w) Plyil i 5wz & (yr wii)

i=1
n = \_
= argininz; In(1+ e_yi'wT“"i) \+ o Yw T
1=
n

= argmin Z elogistic (yiw

woia

Twi)

= argmin F'(w)
w

Minimizing logistic loss is exactly doing MLE for the sigmoid model!



SGD to logistic loss

w — w— nVF(w) EL VFW]-VFL)
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This is a soft version of Perceptron! s(-2)

P(—y;|x;; w) versus H[yﬁ«ésgn(mez—)]




