

Linear Algebra Exercises: Part II

CSCI 567 Machine Learning

Spring 2026

Instructor: Vatsal Sharan

Multiple choice questions may have more than one correct choice.

Q1 Which of the following statements are true? PSD stands for positive semi-definite.

- (a) XX^\top is a PSD matrix if and only if X is PSD.
- (b) If X and Y are PSD matrices, then so is $\lambda X + \mu Y$ for any $\lambda, \mu \in \mathbb{R}$.
- (c) If $X - Y$ and $X + Y$ are PSD matrices, then so are X and Y .
- (d) All eigenvalues of a symmetric PSD matrix are non-negative.

Q2 Suppose A and B are two positive definite matrices. Which matrix may NOT be positive definite?

- (a) A^{-1}
- (b) $A + B$
- (c) AA^\top
- (d) $A - B$

Q3 Consider the matrix

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

- (a) Compute $x^\top Ax$ for $x = (x_1, x_2)^\top$.
- (b) Is A positive semidefinite?
- (c) Is A positive definite?
- (d) Is A invertible?

Q4 Suppose A is a PSD matrix and M is any (not necessarily square) matrix of compatible dimensions. Prove that $M^\top AM$ is PSD.

Q5 Let A be a symmetric matrix with eigenvalues $\lambda_1, \dots, \lambda_n$.

- (a) What are the eigenvalues of $A + \mu I$ for $\mu \in \mathbb{R}$?
- (b) For what values of μ is $A + \mu I$ positive semidefinite?